在过去的几年里,手机电池技术已经取得了很大的进步,但仍然存在一些问题,如安全性较差、体积较大、充电时间较长等。为了解决这些问题,科学家们一直在努力研究新型电池技术。
近日,中国科学院青岛生物能源与过程研究所科研团队在全固态锂电池领域取得新的突破,有望让电子设备小型化、长续航的梦想成为现实。这一成果7月31日在国际学术期刊《自然—能源》发表。
手机、电脑和其它电子设备中使用的锂离子电池,大多都是通过液体电解质来储存和释放能量。现在,科学家们正在研究一种新型电池——全固态锂电池。这种电池使用固态电解质,而不是液体,这使得它们更安全,不会像液体电解质那样容易泄漏或起火。
虽然全固态锂电池听起来很理想,但在研发中也面临一些问题,主要是电池正极内部的不同材料在化学和物理性质上很难完美匹配,产生多种界面问题进而影响电池的能量密度和使用寿命。为了解决这个问题,科研团队开发了一种新的材料——均质化正极材料(锂钛锗磷硫硒)。
△复合正极和均质化正极在充电过程中微观结构演变示意图
与传统材料相比,该材料具有高电导率、高能量密度、长使用寿命等优势:
1. 高电导率:这种新材料兼具高离子电导率、高电子电导率,比传统的电池材料(层状氧化物正极材料)高出1000倍以上。这意味着,即便不依赖导电助剂,正极也能顺畅地完成充放电过程,显著提升了电池的整体性能。
2. 高放电比容量:新材料的放电比容量较高,达到250毫安时每克,超过了目前使用的高镍正极材料。在相同的重量或体积下,新材料的电池能够存储更多的电能。不仅能够让电池在不频繁充电的情况下持续运行更长时间,提高续航能力;而且减小电池的体积,有助于设计更紧凑的设备。
3. 低体积变化:在充放电过程中,新材料的体积变化仅为1.2%,远低于传统材料(层状氧化物正极材料)的50%。这种微小的体积变化有助于维持电池结构的稳定性,从而延长电池的使用寿命。
4. 高能量密度:使用这种新材料的全固态锂电池,其能量密度达到390瓦时每千克,是目前所报道长循环全固态锂电池的1.3倍。
5. 长使用寿命:使用该材料的全固态锂电池可以实现大于10000圈的超长循环,电池在经过5000次循环充电后,仍能保持80%的初始容量。能够更长时间提供更充足的电量。
这项研究对开发高能量密度、长使用寿命的储能设备,为新能源汽车、储能电网、深海深空装备等提供安全、耐久的动力源提供了技术支撑,对开发新型储能体系等具有重要意义。
这项研究的成功,对于推动智能手机、电动汽车等领域的发展具有重要意义。未来,随着这种全固态锂电池技术的不断成熟和应用,我们有理由相信,电子设备的便携性和续航能力将得到更大的提升,为人们的生活带来更多便利。