本发明公开了一种基于灰色广义回归神经网络的小样本软件可靠性预计方法,首先对收集的小样本软件可靠性测试数据中的失效时间数据和测试覆盖率数据分别使用改进的Bootstrap方法进行仿真、扩充,形成与小样本可靠性数据具有相同失效统计规律的扩充可靠性数据;然后得到扩充可靠性数据的失效时间、测试覆盖率和不可靠度的三维曲线;建立灰色广义回归神经网络;采用扩充的可靠性数据对灰色广义回归神经网络进行训练,建立小样本软件可靠性预计模型;最后使用该模型进行预测,获得软件可靠性预计信息。该方法避免了复杂多元似然方程的求解,解决了软件可靠性预计中人工神经网络建模需要大量样本进行训练才能得到可用的预测模型的问题。
声明:
“基于灰色广义回归神经网络的小样本软件可靠性预计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)