本发明公开了一种基于门控和注意力机制的
锂电池剩余寿命预测方法,属于电池技术领域。该方法包括搭建基于门控和注意力机制的深度学习模型,所述深度学习模型包括依次连接的特征提取网络、基于自注意力机制的网络、第一全连接层、第二全连接层与求和单元;所述特征提取网络对输入的数据序列X=[xt‑τ,xt‑τ+1,…,xt]处理得到数据序列所述基于自注意力机制的网络接收数据序列生成对应的输出序列Hattn;所述第一全连接层接收输出序列Hattn,生成中间值H1,所述第二全连接层接收H1;所述求和单元对所述基于自注意力机制的网络的输出与所述第二全连接层的输出求和,生成所述基于门控和注意力机制的深度学习模型的输出作为预测的锂电池容量序列;根据所述预测的锂电池容量序列与指定的锂电池失效阈值,得到所述锂电池的剩余寿命。本发明面对锂电池多维度特征和强因果长时序的情况,能够进行有效的信息提取,从而提高电池剩余寿命的预测精度,实现对锂电池未来工作状态的准确评估。
声明:
“基于门控和注意力机制的锂电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)