本发明公开了一种基于灰色RBF神经网络的加速寿命试验寿命预测方法,该方法通过收集试验数据,构造可靠度-失效时间原始曲线;对失效时间数据进行级比检验;构造可靠度-累积失效时间曲线;建立三层RBF人工神经网络;训练RBF人工神经网络;并利用训练好的神经网络进行预测;最后对预测得到的伪累积失效时间的预测值作还原处理,得到产品正常应力下的寿命信息。该方法不需要建立物理加速模型和求解复杂多元似然方程组;避免了寿命预测中系统误差的引入;解决了加速寿命试验中人工神经网络建模需要大量训练样本的问题,对于小样本试验数据同样适用,便于实际工程应用。与现有的BP神经网络预测方法相比,显著提高了寿命预测精度。
声明:
“基于灰色RBF神经网络的加速寿命试验寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)