本发明公开了一种边缘计算下模型结构优化的车载感知设备联合学习方法,包括:根据车载设备所采用的目标检测算法,建立适用于车载设备的神经网络模型作为本地模型,利用中心服务器提供的初始化参数,进行本地模型的训练,并进行本地梯度更新,得到更新后的梯度;对本地模型进行梯度稀疏化、量化本地梯度、无损压缩处理;将量化后的本地梯度和压缩后的二值化掩码矩阵以流水线的形式上传至中心服务器;在车载设备完成本地模型梯度压缩和上传后,由中心服务器进行逐神经元梯度聚合;通过车载设备获取全局的聚合梯度,对本地模型进行更新,利用更新后的模型进行道路感知。
声明:
“边缘计算下模型结构优化的车载感知设备联合学习方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)