本发明提供公开了一种基于机器嗅觉的蟹类新鲜度等级检测方法,针对不同储存时期的蟹类样本分别进行气味信息的采集和TVB-N的检测,对获取的气味信息进行预处理,该过程包括均值滤波、基线处理和异常数据的剔除,然后选择能够有效表征气味信息的特征,针对多维特征,采用非线性降维的拉普拉斯特征映射算法实现维数的约减,可视化分析的结果与TVB-N检测结果是相对应的,由此建立蟹类新鲜度等级预测模型,将可视化结果的分类信息作为预测模型的输出,提取到的有效特征作为输入,用未知样本测试训练好的模型,得出最终的蟹类新鲜度等级结果。本发明采用一种新兴的机器嗅觉技术来检测蟹类的新鲜度等级,它具有样本处理简单、检测速度快、无损等优点,为水产品市场和人们的日常生活有着巨大的应用价值。
声明:
“基于机器嗅觉的蟹类新鲜度等级检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)