本发明公开了一种微网群边缘调度与智能体轻量化裁剪方法,包括:构建包括电力终端和边缘设备的微网群,计算能力最强的边缘设备k中设有任务分配模型;设置总训练轮次、初始训练轮数,初始化每个电力终端的本地训练模型、稀疏度范围、本地训练模型的聚合权重、经验重放内存;电力终端基于深度强化学习方法对任务分配模型进行训练,并基于模型剪裁对本地训练模型进行剪裁,边缘设备k对训练后的模型进行聚合并更新任务分配模型;根据更新后的任务分配模型,并以最大化长期效益期望为目标预测资源分配策略;电力终端根据资源分配策略执行任务。本发明可以在保证决策准确高效的同时避免大量原始数据的传输、降低模型训练时传输的数据量和传输时延。
声明:
“微网群边缘调度与智能体轻量化裁剪方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)