本发明提供一种结合深度学习和多任务优化的城际车订单分配方法,包括:根据城际网约出行的实际问题进行数学建模,并确定其优化目标;利用已存在的线路的历史订单信息作为训练数据,通过强化学习Actor‑Critic算法训练构建的注意力机制深度网络模型;采用训练好的模型并结合多任务优化进行订单分配优化。本发明提供的方法不仅能够实现“离线训练,在线分配”对同一场景下的订单进行分配,而且能够对新开通的城际路线订单进行预测,而多任务优化可以同时对多条不同城市间城际出行订单进行分配,通过不同线路的相似性进行迁移分别得到彼此的最优分配集合。
声明:
“结合深度学习和多任务优化的城际车订单分配方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)