本发明实施例公开了一种基于非负自适应特征提取的人脸识别方法、装置、设备及计算机存储介质。其中,方法包括将非负矩阵分解,特征提取和自适应邻域学习集成进为统一的框架,利用非负矩阵分解技术得到局部重构数据,在非负重构空间和特征嵌入空间对重构误差同时进行最小化,对重构数据进行权重自适应构造和标签传播学习,并利用基于投影的特征近似错误项进行最小化学习;通过对人脸识别模型进行交替优化和学习,得到用于保持近邻信息的自适应权重系数矩阵、用于提取特征的投影矩阵及近邻保持非负分解矩阵;利用投影矩阵提取人脸测试样本集的识别特征,以利用人脸识别模型根据识别特征实现人脸识别。本申请提供的技术方案提升了人脸识别的准确率。
声明:
“基于非负自适应特征提取的人脸识别方法、装置及设备” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)