本发明属于图像处理技术领域,公开了一种超声图像左室心肌的分割方法、系统及应用,获取超声数据,将数据分为训练集、验证集和测试集并标记;增强训练集样本多样性,截取左室心肌大致区域,对数据做直方图均衡化、归一化操作;使用Pytorch实现分割网络,保存在验证集上性能最好的模型;基于分割的结果,测量厚度。本发明基于卷积神经网络的超声图像左室心肌的分割方法,能够自动的分割舒张末期的左室心肌,并在网络中加入左室心肌的形状信息辅助网络学习,提出的混合损失函数分别从3个角度进行优化,学习的时候进一步加强边界信息;基于分割的结果能自动的测量厚度,整个过程无需任何后处理。
声明:
“超声图像左室心肌的分割方法、系统及应用” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)