一种基于随机卷积神经网络的高分辨率图像场景分类方法,包括数据去均值,获得待分类图像集和训练图像集;模型共享的参数库随机初始化;计算待分类图像集和训练图像集的负梯度方向;训练基础卷积神经网络模型,训练基础卷积神经网络模型的权重;更新函数预测,得到加和模型;迭代达到最大训练次时,利用加和模型对待分类图像集进行识别。本发明使用深度卷积网络对特征进行层次化学习,利用梯度提升方法进行模型的聚合学习,用来克服单个模型容易陷入局部最优解问题,同时提高网络泛化能力;在模型训练过程中,加入了随机参数共享机制,提高模型的训练效率,可以在合理的时间代价下实现对特征的层次化学习,学习到的特征在场景识别中更具有鲁棒性。
声明:
“基于随机卷积神经网络的高分辨率图像场景分类方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)