本发明公开了一种神经网络到决策树的转换方法、存储介质及电子设备,方法包括:获取局部视野网络系统的强化学习决策环境和神经网络决策策略,向强化学习决策环境中输入初始值以得到观测值和观测值对应的值函数,并将观测值输入至神经网络决策策略,以得到观测值对应的输出决策和q值向量,并将输出决策作为新的初始值,直至得到设定数量的观测值和与每个观测值对应的输出决策、值函数以及q值向量,并将每一个观测值和观测值对应的决策、值函数以及q值向量作为一组数据以得到包括多组数据的数据集,利用决策树算法对数据集进行训练以得到目标决策树,通过上述方法获得的目标决策树结构清晰且便于理解,并能够对待决策观测值进行决策得到决策结果。
声明:
“神经网络到决策树的转换方法、存储介质及电子设备” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)