一种基于社区的作者及其学术论文的推荐系统和推荐方法,该系统先利用作者与论文的引用关系和社区信息构建由作者层和论文层组成的双层引用网络,然后,根据用户的历史行为记录和用户阅读过的论文集构建用户兴趣模型,最后根据得到的双层引用网络和用户兴趣模型,分析用户需求,向用户推荐作者及其论文。系统设有:论文抓取、预处理、双层引用网络构建、用户兴趣模型构建和个性化学术推荐五个模块和数据库。本发明系统既能利用作者间研究内容的相关性,通过主题模型构建作者社区;还能在社区内部计算待推荐的作者和论文的多种属性值,改善现有推荐算法计算量大的缺陷;同时计算作者和论文的多种属性值,使得推荐结果更多样化,更符合用户需求。
声明:
“基于社区的作者及其学术论文推荐系统和推荐方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)