本发明涉及一种基于学习采样式的汽车自动驾驶运动规划方法及系统,其包括:建立车辆运动学模型;初始化Open表和Closed表;计算每条前向仿真轨迹的评价值,选取评价值最高的轨迹作为规则最优轨迹;对前向仿真轨迹进行Q值函数估计,选择Q值最大的轨迹作为强化学习轨迹;从规则最优轨迹和强化学习轨迹中选取初段最优轨迹,并存入Closed表中;利用碰撞检测方法筛选不碰撞前向仿真轨迹,将不碰撞的前向仿真轨迹存入Open表中;计算每条前向仿真轨迹的评价值,选取评价值最高的前向仿真轨迹作为候选最优轨迹,并存入Closed表中;候选最优轨迹终点在运动规划所需求的终点范围内时结束运动规划过程;将Closed表格中的初段最优轨迹和候选最优轨迹连接,形成最终规划轨迹。
声明:
“基于学习采样式的汽车自动驾驶运动规划方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)