本发明公开了一种基于图深度学习的图组合优化问题求解方法,包括:获取输入图信息并进行预处理,得到所述输入图的每一个顶点与权值相关的特征,通过分析关于Steiner树的贪心算法得到更新后的矩阵X;基于编码‑处理‑解码的架构构建图神经网络,将更新后的矩阵X作为所述图神经网络的输入,得到表示顶点信息的隐藏向量并进行深度强化学习训练;利用贪心算法根据强化学习训练后的图神经网络选择当前状态下价值最大的顶点,完成图组合优化问题的求解。本发明能够快速,准确的寻找最佳路径,简化求解过程,达到理想效果。
声明:
“基于图深度学习的图组合优化问题求解方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)