本发明公开了一种基于在线稀疏化核学习的欠驱动VTOL系统最优控制方法,包括:基于在线稀疏化核学习ALD算法对VTOL数据进行稀疏化,以降低计算负担;基于稀疏化KHDP算法设计VTOL非线性系统最优控制,采用三层BP神经网络模块设计模型模块和动作模块。最后对KHDP算法进行计算机仿真研究,证明该算法对VTOL飞行航向系统可以进行有效的控制,并使性能指标函数达到最优。把强化学习与稀疏化核学习相结合,提出VTOL系统的KHDP算法,是当前人工智能领域重要的研究内容。VTOL通过传感器获得实时在线数据,利用观测或分析系统行为而进行强化学习,从输入‑输出数据构造递推算法对系统未知参数进行辨识,寻找系统最优化策略,设计自适应动态优化算法,从而实现欠驱动VTOL系统的最优解。
声明:
“基于在线稀疏化核学习的欠驱动VTOL系统最优控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)