本发明公开了一种基于粒子注意力深度Q学习的部分观测路口自主并道方法,着眼于路口场景、车辆并道任务、观测视野被楼宇和其他车辆遮挡住的部分观测条件,使用强化学习中的深度Q学习算法对给定路线的并道车辆的驾驶行为进行优化。使用低维物理信息量作为车辆的观测表征;使用基于粒子的表示处理因遮挡造成的部分观测问题;通过引入注意力机制优化状态表示,使模型可以仅接受未被遮挡到的车辆信息同时具有输入排列不变性;使用深度Q学习算法根据获取到的社会车辆信息输出当前最优驾驶动作;通过在经验回放池中加入多种车流密度下的采样数据,结合优先经验回放技术,使自主并道行为可以适应真实环境下多变的车流密度。
声明:
“基于粒子注意力深度Q学习的部分观测路口自主并道方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)