本发明提供了电力施工监测技术领域的一种电力行业基建项目进度与质量的一体化监测方法,本发明技术方案采用基于卷积神经网络的深度强化学习模型,先通过影像监控设备收集大量的影像数据,以一个电力基建项目作为一个学习样例,然后利用卷积神经网络抽取影像图片中的目标,如人员,设备,现场施工轮廓等,并结合深度强化学习算法,一体化监测项目进度和质量的情况;卷积神经网络具有表征学习能力,能够按其阶层结构对输入影像信息进行平移、旋转不变分类,有效提取影像目标,实现对目标的实时监控,本发明可对当前的基建施工情况进行监测,不但关注基建的进度,更加重视基建过程中的质量保障问题。
声明:
“电力行业基建项目进度与质量的一体化监测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)