本发明提供了一种基于自调优深度学习的机械故障预测方法,方法包括:构建基于CNN的故障诊断模型;利用所述故障诊断模型构建强化学习模型;训练所述强化学习模型,并利用所述强化学习模型自适应调节所述故障诊断模型的学习率;利用自适应调节学习率的所述故障诊断模型进行故障诊断。本发明的有益效果是:构建了一个卷积神经网络强化学习混合模型,该模型根据基于CNN的故障诊断模型的实时状态,实现对学习率的自动调节,进而提高该故障诊断模型的学习效率和学习效果,提高故障诊断性能。
声明:
“基于自调优深度学习的机械故障预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)