本发明提出一种分子性质预测方法及系统,涉及量子化学/计算化学、化学信息学、机器学习/人工智能领域,在化学多世界阐释的框架下,使用密度泛函理论、化学信息学、机器学习/人工智能的手段,以分子结构、基组和泛函等信息作为输入,通过机器学习模型输出分子性质的预测结果。本发明对于任意类型的分子结构和任意的计算策略都可以做出预测,比一般的经验方法、回归分析方法更加精确。
声明:
“分子性质预测方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)