本发明提供了一种基于自组织的模糊小脑模型神经网络学习的开关柜设备故障预测方法,包括S1:对来自开关柜局部放电检测数据进行图谱分析,得到图谱的特征数据存储在二维的矩阵,形成M×N的特征输入,接着采用自相关协方差方法去除原始数据的噪声并减少输入数据的维度;S2:建立具有三层映射关系的自组织小脑神经网络模型;S3:利用李雅普诺夫函数设计该模型的优化学习率;S4:将训练数据作为模型输入,对模糊大脑神经网络模型进行训练;S5:对当前开关柜局部放电检测数据执行步骤S1操作,将获得的数据作为特征输入,将其输入模型对开关柜设备故障进行预测;上述方法可实时掌握开关柜的健康状态,促进电力产业的健康发展。
声明:
“基于自组织的模糊小脑模型神经网络学习的开关柜设备故障预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)