本发明公开了一种基于联邦多智能体强化学习的车联网边缘资源分配方法,具体为:输入车联网环境,初始化智能体本地Q网络和联邦网络参数,并对优化问题建模;根据智能体能否获得奖励分为α、β两类,在当前时隙内两类车辆智能体分别观测本地状态并输入Q网络的;对Q网络输出进行加密处理,并通过联邦网络输出两类车辆智能体的联合动作决策;之后α车辆智能体得到系统反馈的全局奖励,同时缓存池存储当前时隙的样本数据;当样本数量足够时,α型和β型车辆智能体分别更新本地Q网络以及联邦网络的参数;当前训练回合结束后,重置车联网环境,开始下一个回合的训练。本发明在隐私保护的前提下提升了车联网连通性,同时降低了切换开销以及能量损耗。
声明:
“基于联邦多智能体强化学习的车联网边缘资源分配方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)