本发明公开一种基于图像特征深度强化学习的AUV管道循管方法。首先,将AUV循管控制问题建模为连续状态、连续动作的Markov决策过程;其次,控制策略抽象为AUV观测状态(摄像头获取的图像)到运动动作的映射,并利用深度神经网络表达;最后,利用近端策略优化(PPO)方法自主采集数据并训练深度神经网络,最终获得具有一定泛化能力的端到端的循管控制策略。仿真结果表明,本发明能够有效控制AUV的循管动作,而且对于新的和未知的管道几何结构具有较强的泛化能力。该方法是一种端到端(end‑to‑end)的视觉循管运动控制方法,无需知晓AUV的运动学/动力学模型,也无需人工特征提取。
声明:
“基于图像特征深度强化学习的AUV管道循管方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)