一种基于强化学习的Baxter机械臂轨迹跟踪控制方法,首先对Baxter机械臂前三个关节进行系统辨识,确定其连续时间的状态空间方程并将之离散化,得到离散的状态空间模型,该步骤仅用于在仿真时获取机器人前三个关节下一时刻的位置和速度跟踪误差;首先给定机械臂前三个关节一个初始状态,按照固定的采样时间测量并记录三个关节下一时刻的位置和速度跟踪误差,对采集到的位置和速度信息预处理之后使用递归的最小二乘法计算最优控制策略所对应的权值矩阵H,最后根据权值矩阵计算出下一时刻的最优反馈控制。本发明自动适应模型改变带来的模型误差,提高机器人在日常使用中的准确性。
声明:
“基于强化学习的Baxter机械臂轨迹跟踪控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)