本发明涉及一种基于深度强化学习的出租车调度方法及系统,所述系统包括:区域构建模块、需求预测模块、车辆调度模块、模拟器;所述方法包括:S1:形成区域网络;S2:预测任意区域在任意的时间中将会出现的订单数量;S3:计算出一个区域总的车辆供应;获取每个区域的需求/供应状态;S4:将任意空闲车辆所在区域和邻居区域的状态输入训练好的出租车调度模型中,得到该车辆的调度策略,确定该车是继续留在当地区域还是调度到系统指定的邻居区域中。本发明实现对空闲出租车进行调度,增加了订单匹配成功率,减少了乘客的等待时间,提高了出租车使用率。
声明:
“基于深度强化学习的出租车调度方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)