本发明是一种基于深度强化学习的无人系统集群控制方法。本发明涉及无人系统集群控制技术领域,本发明为了解决现有无人系统集群控制方法环境适应性差的问题。本发明包括:在无人系统集群中,每个无人系统分别探测环境信息;将环境信息分为目标信息、障碍信息以及其他无人系统状态信息;对获得的信息分别进行标准化处理;将标准化处理的信息通过深度神经网络处理,得到选择动作的概率值;根据得到的概率值选择动作,观测新的环境信息并获得动作评价值;收集所有无人系统与环境交互的数据训练深度神经网络;利用训练好的深度神经网络进行无人系统集群控制。本发明用于无人系统集群控制技术领域。
声明:
“基于深度强化学习的无人系统集群控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)