本发明涉及无人库区物流调度技术领域,特别是指一种基于强化学习算法的无人天车路径规划方法及装置。方法包括:通过待规划场景中的障碍点集合与多个任务案例中的障碍点集合,确定待规划场景对应的初始Q表;基于Bellman方程、ε‑greedy贪婪选择策略进行路径预测,并对初始Q表进行更新,生成路径预测对应的Q表;在生成的多个路径预测对应的Q表中,选择满足筛选条件的Q表作为待规划场景对应的规划Q表,将规划Q表对应的路径规划作为待规划场景的路径规划。采用本发明,可以减少迭代次数,提高路径规划的效率。
声明:
“基于强化学习算法的无人天车路径规划方法及装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)