本发明属于室内定位技术领域,具体是涉及一种面向异构环境的基于深度强化学习的轨迹定位方法。本发明充分利用了环境中的观测和智能体自身的历史动态信息,以智能体的位置、环境中具有设备异构性的RSS向量和过去n个时刻的历史动作为状态,用于动作的选择。再基于近场条件选择强于RSS阈值对应的APs,以构成选定的APs集合,再根据集合的大小计算最终奖赏值。依据MDP中设计的各要素对智能体的位置进行估计,并以奖赏值为学习导向基于经验重放机制和目标网络进行深度强化学习算法的迭代训练。本发明基于路径损耗模型得到具有设备异构性的仿真RSS数据,实验结果证明本发明所提方法能够实现较高的定位精度,并对处理异构RSS数据也具有一定的鲁棒性。
声明:
“面向异构环境的基于深度强化学习的轨迹定位方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)