本发明提出了一种电力系统深度强化学习紧急控制策略提取方法。通过引入电力系统节点模型多个历史时刻的特征数据构建观测数据;进一步构建深度Q学习网络模型,并采用随机梯度下降优化算法进行优化训练得到电力系统紧急控制深度强化学习模型;基于已训练完成的深度Q学习网络模型,在特定的故障场景下,生成数据集;并在此数据及上训练基于信息增益比的加权倾斜决策树模型,以完成策略提取;设定策略保真度指标、策略实际控制性能指标、模型复杂度指标,以评估不同超参数下的模型性能,从而根据实际需求选出最优模型,以用于电力系统紧急控制领域中。
声明:
“电力系统深度强化学习紧急控制策略提取方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)