本发明涉及基于无模型强化学习的内燃机起动控制策略、控制系统及汽车,首先建立了内燃机起动系统框图,然后设计基于嵌入辅助轨迹的算法并应用,基于此设计了带有自适应控制器的内燃机起动系统结构,进一步更新设计了基于辅助轨迹的嵌入式神经网络算法并应用,最后给出了速度模块的方框图。本发明开发出一种不引入探测噪声的完全无模型算法,并且在内燃机起动系统的框架内保证了收敛性和稳定性,大大提高了系统的性能,改进了传统的无模型算法,并将其与强化学习算法结合起来,利用现代控制理论设计了一种具有最优自适应控制的系统,其更好地解决了内燃机起动问题。
声明:
“基于无模型强化学习的内燃机起动控制策略、控制系统及汽车” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)