本发明涉及一种强化学习结合循环网络的机器人路径规划及控制方法,该方法包括:构建生成机器人路径的循环网络,所述的循环网络依次生成机器人路径中的路径点;采用强化学习方法训练所述的循环网络;利用训练的循环网络执行机器人路径规划;控制机器人按照规划的路径点依次移动。与现有技术相比,本发明能够在局部信息受限的同时极大程度上对未知环境进行推理,节约资源,提升效率,实现可观测范围内的可行路径规划,从而在复杂场景下能够找到目标点,实现机器人的移动控制。
声明:
“强化学习结合循环网络的机器人路径规划及控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)