本发明公开了一种基于强化学习的服务流程构造方法。将流程构造过程视作图生成过程,使用有向无环图来表示服务流程图,并使用基于深度随机游走的方法来生成服务流程图的图嵌入表示向量;将图嵌入向量输入策略神经网络和价值神经网络,策略神经网络的输出为对服务流程图中的下一条边的预测,价值神经网络的输出为对当前服务流程图价值的估计;根据服务流程构造的不同优化目标来设计奖励函数,将其作为神经网络参数学习的信号,并使用基于策略梯度的方法来学习神经网络参数。本发明提供的基于强化学习的服务流程构造方法能根据不同的流程构造目标来学习流程构造方法的参数,并自动化挑选合适的服务实体来进行流程构造。
声明:
“基于强化学习的服务流程构造方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)