本发明公开了一种基于深度强化学习的滚动轴承故障类型识别方法,其步骤包括:1、采集滚动轴承一维时间序列故障数据;2、连续小波变换算法对故障数据进行预处理;3、人工标注并进行归一化位置编码;4、建立基于改进的Transformer‑LSTM双分支异构网络和强化学习网络;5、对网络进行训练得到强化学习最优训练模型;6、输入测试集到最优训练模型得到最优故障诊断分类识别效果。本发明通过强化学习的方法,提高了滚动轴承故障分类识别的准确性,同时使得模型具有更好的抗噪性能。
声明:
“基于深度强化学习的滚动轴承故障类型识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)