本发明属于电力系统调度优化技术领域,更具体地,涉及一种基于深度强化学习的区域电网日前‑日内联合调度方法,其建立了区域电网日内滚动调度优化模型,并提出了一种基于深度强化学习的调度策略求解。首先,日前调度计划每日根据日前风电及负荷预测曲线进行制定;然后,针对区域电网建立日内滚动调度模型:目标函数和约束条件;最后,利用深度强化学习算法对日内滚动模型进行求解。该方法在日前调度计划与AGC调控之间加入日内滚动计划,使得调度计划之间的衔接更加紧密、过渡更加平稳。深度强化学习算法相较于传统基于数学模型与优化求解器的调度优化方法更具有实时性,极大提升了求解效率。
声明:
“基于深度强化学习的区域电网日前-日内联合调度方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)