本发明公开了一种基于图神经网络强化学习的机器人自主控制方法。本发明步骤如下:1、根据环境反馈给机器人传感器的信息和机器人的物理结构,组建机器人的特征图。2、将得到的特征图输入到图神经网络,在训练阶段使用机器人感知到的监督信息对图神经网络进行训练。3、使用训练完成的图神经网络对感知状态信息进行处理,得到更新后的机器人状态信息,预测下一时刻机器人的状态信息。4、使用建立起来的环境模型,以及模型预测控制算法,对未来一步机器人动作进行决策。本发明使用基于图网络的强化学习模型,成功地完成了之前强化学习并不能很好完成的动作提升了机器人自主控制的稳定性和可靠性,使得机器人自主控制更加便于实际应用。
声明:
“基于图神经网络强化学习的机器人自主控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)