本发明涉及一种基于强化学习的微电网优化调度方法,包括:获取微电网风光元件的预测信息以及电源的边界信息,搭建基于强化学习的微电网优化调度强化学习模型;基于强化学习的微电网优化调度强化学习模型进行自学习,并积累自学习过程中学习到的调度知识,得到拥有先验调度知识的微电网;通过迁移学习挖掘和利用学习到的调度知识,搭建相似度计算模型,用于实现所述调度知识的再利用;在新的微电网优化调度任务中利用先验调度知识进行微调学习,获得新任务的优化调度策略。本发明方法将强化学习和迁移学习引入到微电网优化调度中,强化学习具备强大的自学习和记忆能力,并且能够将寻优过程中学习到的经验知识储存在神经网络参数中。
声明:
“基于强化学习的微电网优化调度方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)