本发明一种基于深度学习与强化学习的室内声学行为识别方法,涉及室内声学行为识别技术领域。本发明包括A通过终端声音传感器实时获取室内原始声音数据,并将其转换成不包含隐私的特征数据;B将特征数据中包含的用户行为作为标签和特征数据,输入到深度强化学习网络中训练;C在训练过程中,每次提供一定批次的特征数据给深度强化学习网络,并由深度强化学习网络进行预测,根据其预测结果,动态决定下一批次所提供的各分类特征数据的比例及回报值R的值;D根据深度强化学习网络对上一批次的各个分类进行预测的错误率,决定是否停止训练等步骤。本发明在只使用不平衡数据集作训练深度强化学习网络的情况下,极大提高深度强化学习网络预测准确率。
声明:
“基于深度学习与强化学习的室内声学行为识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)