本发明公开了一种基于深度强化学习的DIDS任务调度优化方法,包括如下步骤:对检测引擎进行性能等级评估,对所检测的数据包进行负载评估,用马尔科夫决策过程建模,建立深度循环神经网络模型,调度器进行决策并确定如何分配检测引擎去检测数据包。对于检测引擎数量固定的分布式入侵检测系统,本发明提出的任务调度算法可以做出最优决策使系统整体负载降低,同时还能解决状态空间和动作空间过大造成内存空间占用太大的问题。
声明:
“基于深度强化学习的DIDS任务调度优化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)