本发明公开了一种基于适合度轨迹的神经网络强化学习方法及系统。该神经网络强化学习方法包括:初始化神经网络权值,强化学习参数及适合度轨迹;获取当前环境状态和立即回报值;计算强化学习的Q值函数;获取适合度轨迹和更新神经网络权值;检测新的环境状态和立即回报值;新的环境状态和立即回报值满足结束条件,强化学习结束,不满足结束条件,返回重新检测获取当前环境状态和立即回报值。其优点在于:解决了强化学习面对连续状态空间的函数逼近问题,同时引进的适合度轨迹,对经历过的状态动作正确的访问路径的有效保存,提高神经网络的泛化性能,最后加快算法的收敛速度。
声明:
“基于适合度轨迹的神经网络强化学习方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)