本发明公开了一种面向强化学习模型的容器化测试方法与系统。本方法为:1)测试方根据待建的测试任务制作测试环境Docker镜像、代理Docker镜像及其对应的连接模块、回调模块、评估模块,然后将连接模块封装到代理Docker镜像文件模板中;2)测试方在测试平台上创建测试任务,并上传镜像文件到测试方服务器;3)被测方下载测试任务的镜像文件训练代理,将训练后的代理集成到代理Docker镜像并上传至测试方服务器;4)测试方服务器在新上传的代理Docker镜像文件中添加或替换回调模块和评估模块,并对其进行重新封装得到新的代理Docker镜像后,开始运行测试任务;5)测试方服务器将测试过程数据传回测试平台。
声明:
“面向强化学习模型的容器化测试方法与系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)