本发明涉及人工智能技术领域,具体为一种基于强化学习模型的预测机柜进风温度的方法,所述方法包括以下步骤:所述方法包括以下步骤,步骤1通过热成像装置采集机柜的表面实际温度数据,通过热敏装置采集对应机柜的实际进风温度数据;步骤2调用神经网络模型进行训练,用机柜的表面实际温度数据为输入,机柜的实际进风温度数据作为输出反复训练,使得神经网络模型通过训练后能预测出机柜的进风模拟温度数据;步骤3建立强化学习模型;步骤4获得增强学习模型最优策略下的神经网络模型生成新的预测器;步骤5用最优的预测器对机柜的进风温度进行预测。该方法提高机柜的进风模拟温度数据准确率,节约了物料与人工成本,便于使用。
声明:
“基于强化学习模型的预测机柜进风温度的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)