本发明涉及机器人智能控制领域,特别涉及基于模型预测控制优化强化学习的四足机器人控制方法,包括:根据物理样机的物理参数建立动力学模型,并将动力学模型转化为状态空间方程;根据状态空间方程优化模型预测控制,并将优化后的模型预测控制部署到物理样机上;建立强化学习模型,强化学习模型与环境、模型预测控制同时交互训练物理样机。通过基于模型预测控制优化强化学习降低训练过程中产生的无意义数据,通过模型引导训练降低对算力的需求,能直接部署于物理样机训练减少训练过程解决了基于价值和策略的算法对数据和算力要求高,需要昂贵的计算机设备进行预训练才能够初步达到机器人的控制效果,在部署到物理样机后还需进行长时间训练的问题。
声明:
“基于模型预测控制优化强化学习的四足机器人控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)