本发明属于FPGA测试技术,具体涉及一种基于图强化学习的FPGA互联资源测试算法。本发明改进了现有基于强化学习和深度强化学习的FPGA互联资源测试方法的缺点,即神经网络不具迁移性的缺点。本发明借助图神经网络提取互联资源图的隐藏特征,再利用深度强化学习优化配置策略,在本发明中,将其称为图强化学习。本发明方法具备迁移性与通用性,已训练收敛的神经网络可以应用到任何FPGA
芯片的互联资源测试配置向量的生成中,同时对于所有FPGA芯片都可采用该方法。本发明对FPGA互联资源的测试成本较低,不需要专家人工找寻测试配置,同时已收敛的神经网络可以快速应用到任何FPGA芯片的互联资源测试中,并且生成FPGA测试配置的过程完全是自动化的。
声明:
“基于图强化学习的FPGA互联资源测试算法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)