本发明公开了一种基于深度学习的化学分子相关水溶性预测方法。该方法包括:构建深度学习模型,其中所述深度学习模型基于双向时间序列预测模型和注意力机制构建,用于学习化学分子结构序列与水溶性属性之间的对应关系;以设定的损失函数最小化为目标训练所述深度学习模型,训练过程以表征化学分子结构的字符序列编码作为输入,以化学分子相关水溶性属性信息作为输出。利用本发明训练的深度学习模型,能够准确预测水溶性以及其他相关属性。
声明:
“基于深度学习的化学分子相关水溶性预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)