本发明涉及一种基于深度强化学习的监控视频目标检测任务调度方法,属于边缘计算技术领域。首先抽取监控视频关键帧压缩待处理视频规模,使用残差U‑Net神经网络对监控视频的关键帧进行显著性目标检测,识别有价值的目标信息。同时,采用云边协作架构,根据云服务器和边缘设备的可用资源,使用深度强化学习异步优势行动者评论家A3C算法优化调度残差U‑Net网络,将残差U‑Net网络目标检测任务根据当前系统可用资源,自适应地卸载在云服务器或边缘设备执行,从而减小系统时延,提高实时性能。
声明:
“基于深度强化学习的监控视频目标检测任务调度方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)