本发明涉及一种基于混沌粒子群和XGBoost的沥青路面弯沉盆性能预测方法,所述方法包括以下步骤:步骤1、采集历年沥青路面使用性能检测数据及沥青路面使用性能影响因素数据,步骤2、根据弯沉盆面积的变化规律,将载荷水平突然变化处作为分割点,确定分段回归的分段区间;步骤3、对步骤2中的每一个分段区间分别建立XGBoost回归器并进行训练;步骤4、通过混沌粒子群优化参数,利用混沌现象的随机性和遍历性的特点来避免局部最优;步骤5、给出结构路面的弯沉盆数据预测。该技术方案利用混沌粒子群对XGBoost的参数和修正后的分段回归方法进行了优化和改进,显著提高了预测效率。
声明:
“一种基于混沌粒子群和XGBoost的沥青路面弯沉盆性能预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)