本发明公开了一种断层活化多场观测及预测的室内试验装置和方法,该装置包括:有机玻璃箱、电磁阀、气泵及信息采集装置;有机玻璃箱由底板、左侧板、右侧板、前侧板和后侧板围成,相邻板的连接处配置直角钢架;有机玻璃箱的底板、左侧板、右侧板及后侧板上各固定放置若干气囊;气囊的充放气口由电磁阀控制,电磁阀与气泵连接;通过对不同所述气囊充放气状态的改变,模拟不同地质条件下断层活化运动过程;信息采集装置进行分布式感测和动态捕捉三维应变场、位移场、温度场和地电场数据。通过多物理场的立体可视化动态监测这一优势,得到断层处的应力场、位移场、温度场和地电场变化特征,进而分析断层活化程度以及预测断层活化趋势。
本发明实施例提供一种深部巷道围岩破裂模拟装置,该装置包括:纵向加载系统、水平加载系统、模型承载框架;其中,模型承载框架用于放置待测模型;纵向加载系统包括:纵控加载器、纵控下压板、纵控下传力板;其中,待测模型位于所述纵控下传力板的上表面上;纵向加载器用于通过所述纵控下传力板向所述待测模型施加竖直方向的作用力;水平加载系统包括:多个侧向均布加载器、多个侧向传力板;其中,侧向均布加载器用于通过所述侧向传力板向所述待测模型施加水平方向的作用力;多个侧向传力板依次围设在待测模型的多个侧面外侧。本发明提供的装置,通过模拟地下的地质应力环境,获取数据进行分析,从而实现对深部巷道围岩破裂机理进行研究分析。
本发明涉及一种自钻式胀壳自动卡紧中空注浆锚杆,包括中空注浆锚杆,中空注浆锚杆的末端连接有止浆塞,中空注浆锚杆前端旋接有钻头;中空注浆锚杆中间设有注浆通道,注浆通道内设有活塞;钻头的尾部安装有旋转刺杆,中空注浆锚杆的前端上靠近钻头尾部的位置处安装有胀壳瓣片,中空注浆锚杆每隔一段距离设有注浆孔。本发明在注浆时利用胀壳自动卡紧,快速形成锚固力,实现快速钻锚注一体化操作,对复杂地质条件下破碎围岩有较好的稳定锚固效果,可有效提高工作效率和可靠性。
本发明属于矿井安全施工技术领域,具体涉及一种巷道底板加固系统及其施工方法,包括巷道底板上开设的浅注浆孔、中注浆孔和深注浆孔,所述浅注浆孔、中注浆孔和深注浆孔的深度依次递增,所述浅注浆孔、中注浆孔和深注浆孔均阵列布置有多个,且各浅注浆孔、中注浆孔和深注浆孔相互交错布置;系统还包括用于向各注浆孔内进行注浆的注浆封孔器。本发明有效的加固了地质异常带、破碎带、泥化底板带,增加了底板围岩的稳定性,有效解决了底板底鼓问题,采用注浆封孔器代替原注浆钢管注浆不仅节省了材料,同时也解决了底板注浆封堵不实的难题,是一种行之有效,经济易操作的底板注浆加固技术。
本发明公开一种基于RFID技术的矿井辅助运输智能管理平台,包括云平台、矿用“一张网”通信、辅助运输设备、RFID信息编码及追踪设备、风门、道岔控制器,采用RFID无线射频识别技术,将矿井物料辅助运输与RFID标签相结合,通过固定在关键节点处的读写器、手持终端与管理平台建立三位一体的矿井物料信息动态编码与可视化追踪体系。在复杂地质条件下,针对煤炭辅助运输多种类、多目标、多需求以及运输巷道坡度变化大、变坡拐弯多、搬家次数多问题,采用本发明智能管理平台,提出了二级标签方法,通过建立煤炭仓储智能编码体系,将物料信息标签化,通过LANDMARC算法,对采集到的标签数据,运用服务器进行边缘计算、分析处理,获取物料的位置信息,并使用Unity3D三维软件对辅助运输“地对地”、“地对空”转载场景进行建模,结合GIS地理追踪技术对运输场景进行渲染建模,虚实结合,在调度平台端实时显示物料位置画面,实现煤矿物料智能化信息管理和辅助运输可视化追踪。
本发明提供一种上向岩石爬坡段定向钻孔的方法,包括:采用第一钻头对待钻孔区域进行钻孔并形成第一定向孔;采用第二钻头对所述第一定向孔的至少部分侧壁进行扩孔并形成第一钻孔;向所述第一钻孔内置入套管;将所述第一钻头穿过所述套管对所述待钻孔区域继续进行钻孔并形成第二定向孔;采用第三钻头至少对所述第二定向孔的侧壁进行扩孔并形成第二钻孔,其中,所述第一钻孔和所述第二钻孔组成抽采孔。本发明的上向岩石爬坡段定向钻孔的方法,通过采用先定向钻孔,再扩孔的工艺方法可以有效保证钻孔在经过地质异常体轨迹段的钻孔成孔的稳定性。
本发明涉及切缝药包与轴向不耦合联合装药台阶深孔光面爆破装置,包括多个装药管标准节,装药管标准节的管口之间顺序连接构成爆破管,相邻装药管标准节的连接处设置有撑托炸药的托盘,爆破管的一端设置有底座,爆破管的另一端设置有顶盖,托盘的盘面上设置有导爆索穿过的通孔,所述导爆索由底座向上依次穿过托盘上的通孔并且由爆破管的顶盖开设的通孔引出,托盘上还设置有裂缝,该装置能够提高炸药的有效利用率,减弱岩体复杂地质环境对装药的影响,防止爆破气体过早溢出,提高爆破气体破岩时间,提高安全和破碎效果,同时控制爆破振动危害,降低了施工与开挖成本。
本发明涉及一种钢板立井井壁变形监测方法,包括如下步骤:首先对已建井筒周围地质情况进行分析,确定井筒易发生破坏的位置及范围,确定危险断面和井筒竖向监测范围;在钢板井壁内表面上安装井壁监测装置,实时监测井筒变形情况;对井筒变形监测的数据进行采集,将采集后的数据导入数据库中,再由业务逻辑层即服务器根据客户端的指令对数据库中录入的数据进行处理分析;根据警戒值采取相应的措施。本发明钢板立井井壁变形监测方法,采用监测装置包含不同类型传感器类型,实现不同类型传感器工作性能之间的相互验证,同时在水平方向上对井筒易破坏断面进行监测,在竖向上对井筒竖向连续变形进行监测,能够准确反映井筒面受力状态。
本发明公开了一种含破碎带断层模型的建立方法,具体指建立符合实际的含破碎带断层建模方法。包括:根据物探、钻探等手段获取断层基本资料;利用FLAC3D软件分别建立断层上盘、下盘、破碎带三个子模型;在断层上、下盘与破碎带接触区域分别建立结构面;利用结构面表征断层的滑移面,建立含破碎带的断层整体模型。本发明所建立的模型,能够准确表征断层的实际地质条件,有效表现出断层滑移的特性,从而为基于数值模拟的断层研究,提供了一种准确且符合实际的建模方法。
本发明公开了一种基于DFOS应变重构深部采场超前支承压力演化模型的方法,包括以下步骤:包括监测系统的构建、超前支承压力的应变体数据采集、海量应变数据体的处理与分析、重构采场超前支承压力演化模型、修正采场超前支承压力演化模型等。本发明提供的基于DFOS应变重构深部采场超前支承压力演化模型的方法,采用DFOS技术中的BOTDR技术,动态捕捉煤层回采过程中采场底板一定深度范围内岩层的应变状态,获得超前支承压力分布特征,建立采动过程中超前支承压力分布的二维地质模型,具有适用性强、操作便捷的特点,对预防巷道围岩失稳、冲击地压及煤与瓦斯突出等可提供良好的安全保障。
本发明属于矿山巷道围岩变形控制的一种方法,该方法主要包括:钻孔卸压,围岩压力监测,预裂切割爆破,缷压槽充填和围岩变形监测。发明的特征在于:通过在巷道围岩内采用钻孔缷压,通过卸压区域压力监测确定是否到达卸压效果。如果钻孔缷压未达到预期效果,则采用预裂爆破技术在巷道围岩内形成卸压槽,并在缷压槽内充填围岩变形缓冲材料,同时在缷压槽内埋设压力传感器和布设围岩变形监测断面以监测缷压效果。本发明能有效控制矿山大埋深或者高地应力的地质条件下巷道围岩变形,保证矿山高地应力环境中的巷道能在生产期间正常使用。
本发明公开了一种大孔径过滤式瓦斯封孔管抽采器及其工作原理,包括外层抽采花管、内层抽采花管、过滤尖锥和抗阻燃纱网,外层抽采花管和内层抽采花管之间设有抗阻燃纱网,内层抽采花管的管头处设有过滤尖锥;外层抽采花管和内层抽采花管上均开设有长方形管孔;内层抽采花管与封孔实管密封连接,封孔实管与煤矿瓦斯带压快速注浆封孔器绑扎在一起,煤矿瓦斯带压快速注浆封孔器的注浆管与注浆泵连接。本发明利结构设计合理,一方面增加了抽采管路抗压强度,可以实现长时间抽采,另一方面保证了抽采系统可以不被堵塞,降低抽采阻力,提高瓦斯抽采效率,广泛适用于各种地质情况下的瓦斯抽采。
本发明公开了一种煤矿井下微震监测系统的布设方法,包括根据采场工作面生产地质条件,设计采场岩层检测点n个,数据采集盒安装点2个;自巷道里段开始在所确定的采场监测点安装n个传感器并由里至外编号,数据采集盒首次连接的传感器分别为xm、ym;并在上位机输入对应通道已连接的传感器坐标,随着工作面的推进,更新传感器,并将新的传感器坐标录入系统,依次类推。本发明针对微震监测系统布设做出优化改进,摆脱以往对大批量设备的依赖性,提出了一种煤矿井下微震监测系统的布设方法,可以满足在长距离采场内保证监测高精度的定位效果下实现对设备的循环重复利用,以达到资源的应用最大化,同时满足矿井机械化、高效率的要求。
本发明公开了一种深部承压水上采动断层突水多场前兆信息演化相似试验装置与测试方法,涉及地层温度与相似模拟试验领域,其包括试验支架,侧向挡板,加载板,透明玻璃板,模型存放腔,侧压加载系统,垂直加载系统,水压加载系统,水温调节系统,地温调节系统,信号采集与处理系统,试验模型;该试验装置的水压加载系统、水温调节系统和地温调节系统能对试验模型提供稳定的高温、高压水和梯度地层温度,较好模拟深部承压水上含断层煤系地层的真实地质力学环境,有利于深部承压水上采动断层突水多场前兆信息的真实再现,反演分析深部承压水上采动断层突水过程中断层围岩应力、位移、裂隙、渗流、温度等多场前兆信息的演化规律、耦合特性及影响因素。
本发明公开了一种硬质介质地电场快速测试装置及方法,利用快速电极与硬质介质充分接触,通过布质袋充填粘土介质来降低接地电阻,利用粘土内的铜片增大接触面积,利用导电线连接铜片与电极电缆,共同组成与硬质介质的连接测量装置,进一步提高与硬质介质的耦合程度,获取良好的地质体内电阻率数据,为混凝土类硬质介质工程勘查与处理提供有效的技术参数。
本发明公开了一种岩层变形破坏特征的井孔多参量探查方法,本发明采用BOTDR分布式光纤单端测试的方式,在深钻全孔深采集应变数据,有利于反映工作面采动后上覆地层的不同深度位置、不同岩层在变形过程中的地质体表现出的挤压、拉张、剪切等变形特征。形成有效的线性测试全钻孔控制深度地层的变形,弥补原有点式数据采集容易出现数据体遗漏的不足。并且测试方法在测试更加清晰直观,拥有更高的准确度和精度,能够实现对垮落带和导水裂缝带高度的准确判断。其结合并行电法测试技术的地电场响应分析,能够实现定性到定量的精确化判断,有效提高测试准确性,控制其他干扰因素。
本发明公开了一种基于入侵杂草优化算法求取概率积分参数的方法,包括以下步骤:(1)将已知工作面地区的地质采矿条件参数和工作面种群初始参数代入概率积分公式,预计观测点的下沉值和水平移动值;(2)将工作面观测点的实测下沉值和水平移动值与步骤1中的预计下沉值和水平移动值作差,构建误差函数;(3)将步骤2的误差函数作为适应度函数,采用入侵杂草优化算法反演概率积分参数,求解出该工作面的概率积分参数。本发明方法简单,首次将入侵杂草优化算法应用于概率积分参数求取,可解算出全部概率积分参数,并且具有求取参数精度高的优点。
本发明公开一种煤矿含水巷道的围岩支护施工方法,属于地下工程围岩支护领域,包括以下步骤,1)掘巷后初喷作业;2)根据含水巷道地质条件,进行可控注浆锚杆结构设计,及可控注浆锚杆—锚索支护参数设计;3)采用可控注浆锚杆+锚索+金属网+喷浆支护,形成注浆加固隔水圈,并对巷道表面围岩喷浆;4)通过数值模拟等现场观测技术手段,确定需要加强支护、隔水的关键部位;5)调整优化含水巷道支护参数,对关键部位进行注浆加固支护;6)对巷道底板进行合理支护;还提供了一种围岩支护结构。本发明支护方法及结构适用于不同深度的含水巷道、围岩较破碎巷道及软岩巷道,且施工简单、方便,可进行大范围推广。
本发明提供了一种高强自承载双型钢组合支护结构及方法,涉及地下工程技术领域。该高强自承载双型钢组合支护结构,包括异型钢体、支护杆体、U型钢体、缓冲吸能鼓和椭球形支撑体。本发明的支护结构,支护结构简单,组合支护效果呈四个层次的支护(锚杆‑锚索‑注浆锚杆组合、异型钢体、自承载椭球组合体(椭球形支撑体和缓冲吸能鼓)、U型钢体),每一层支护都具有独立承载能力,与现有技术相比,组合之后的支护效果不是简单的叠加,而是大大提升,能自适应深部高应力复杂地质条件巷道、隧道围岩高应力和大变形,大幅提高支护强度;本发明的支护方法,支护操作方便,支护效果好,具有较高的推广应用价值。
本发明公开了一种分段致裂煤体卸压系统及应用方法。所述分段致裂煤体卸压系统,包括智能定位钻井控制系统、智能定位钻井子系统、分段致裂三联开发系统、支护系统、智能定位钻头、钻头定位仪、六角螺母、六角螺栓、喷水孔、气相混合致裂管、保险丝、气液分段输送管道、致裂抽气连接管、输水管、双通管、管壁安全阀、抽气管三通阀、线缆、数据线、导向阀、气液泵站以及蓄水仓。为了对煤体中蕴藏大量的弹性能进行释放,本发明通过智能定位钻井控制系统对赋存在高应力环境下的煤体布置井筒用于服务敷设各子系统,分段致裂三联开发系统用于N2、水及CO2输送,支护系统对智能定位钻井子系统进行保护,智能定位钻头可以根据井田内不同位置进行方位操控,通过气液泵阀可以实现N2、水及CO2的注入与抽放。智能定位钻井控制系统可以实时监测矿震频率,结合智能定位钻井子系统、分段致裂三联开发系统利用N2、水及CO2对复杂地质条件下蕴藏大量弹性能的煤层进行松动致裂,基于子系统协调控制,达到以位移场、应力场及裂隙场等多场物理测控,煤体致裂卸压和煤油气安全智能协同开采为支撑的冲击地压防控治理模式,减少煤矿安全开采成本,提高冲击地压防治效果。
本发明涉及地质监测领域,具体的说是一种基于北斗卫星与GPS融合的矿区三维形变监测及数据处理方法,该方法采用的三维形变监测装置包括固定台面、水平测量标志、GPS观测杆、强制归心装置、基板、一号箱体、二号箱体和人工角反射器;还包括驱动单元、俯仰角调节单元、水平旋转调节单元、位置调节单元、双头气缸、储气箱和控制器。通过驱动单元和俯仰角调节单元间的配合,实现反射锅竖直方向上角度的调节;同时,利用水平旋转调节单元作用,使得人工角反射器进行水平方向上的转动;通过俯仰角调节单元和水平旋转调节单元作用,对人工角反射器进行全方位的调节,避免检测死点,从而提高了三维形变监测装置的实用性。
本发明涉及水文地质参数测定技术系统,具体涉及一种多钻孔含水层水流流速流向测定方法及系统,本发明的测定方法包括:在多个钻孔中设置电极;对其中一个钻孔中的电极供电;在供电电极的钻孔中投入电解质,并记录投放时间;测量其余钻孔中的电极电位,并记录电位测量时间;确定含水层水流的流速和流向。本发明提供的技术方案是基于多钻孔条件,利用充电法,在多个钻孔中布置测试系统,通过等电位点测量,可以高效、快捷、准确、无放射性污染地测定深孔地下水的流速流向。
本发明为一种悬臂式掘进机机载随掘锚钻探一体化钻机。钻机主要由钢板结构件和液压系统组成。钻机的钢板结构件有:收放主臂、钻机架、竖直回转机构及水平回转机构等。钻机的液压传动系统包括:钻孔液压马达、钻机水平回转液压马达、钻机垂直回转液压马达、伸缩腿液压缸、钻机推进液压缸以及液压控制元件和液压辅助元件组成。其特征在于将钻机和掘进机结合成一体,分布在掘进机悬臂两侧,利用掘进机的行走机构实现钻机自身的行走。可以对掘进巷道进行全方位多功能钻孔,既能实现锚杆支护和顶板岩性探测,又能实现炮眼钻凿及瓦斯抽排钻孔、地质钻孔等的钻进,为实现安全快速高效的巷道掘进提供装备手段。
本发明公开了一种带状充填煤炭地下气化开采方法,涉及煤炭开采领域,包括获取矿区地质参数,获取气化炉宽度的极大值Lgm和气化炉隔离煤柱的极小值Lgp,然后进行气化炉宽度、隔离煤柱宽度及充填率的精准设计,获取设计值后进行气化区域布置,划分气化工作面和隔离煤柱范围;通过确认单一气化工作面开采完毕所需时间,确定注浆材料配比,使充填材料凝固时间大于达到设计充填率所需工作时间并小于气化开采完毕单一工作面所需时间;然后对当前开采完毕的气化工作面充填,直至达到设计充填率;同时对下一气化开采工作面进行开采和充填,并满足下一气化开采工作面与当前开采完毕的气化开采工作面不相邻;本发明能够有效提高地下开采率。
本发明公开了一种基于钻孔数据的三维地层建模方法,属于计算机科学可视化领域,通过对钻孔数据处理,将建模区域内的原始钻孔数据进行统计,得到关于钻孔编号、测深、坐标数据和分层信息的表格;建立点模型读取表格,建立钻孔数据库,根据钻孔信息构建分层点模型数据;进行克里金插值,导出分层点数据模型进行克里金插值,获得各层的虚钻孔数据,导入钻孔数据库,更新建立的点模型;建立面模型,根据钻孔数据建立各层面模型,根据控制点与曲面的接触情况编辑曲面;建立三维地层模型,选择建模区域,选择所有地层构建地层柱,建立地层面,根据实际剖面图等对地层面进行调整,建立地质格网,最终生成三维地层模型。
本发明公开测井电缆长度校准方法,包括以下步骤:将多个套管通过接箍拼接在一起,并下入井中,测井电缆底部安装声波探管后下放至井中,采用测井仪将电缆进行下放并测井深,声波探管通过测井电缆连接地面的数据采集模块,数据采集模块连接数据处理显示模块。本发明的有益效果:电缆全程处于实际测井受力状态,使得校测结果既准确可靠又方便简单,能够实现测井深度与实际钻孔或地层深度的完美一致,为提高测井资料的地质应用效果奠定了坚实基础。
本发明公开了一种声光水位测量仪及测量方法,涉及钻孔抽水技术领域,包括:探针接开关,探针接电阻R4,电阻R4接NPN三极管,NPN三极管接电阻R1,NPN三极管接PNP三极管,PNP三极管接电阻R2、发光二极管、电容C1、电容C2,三端稳压器、语音模块,PNP三极管接电源,电源接开关,三端稳压器与语音模块连接,电容C3与电容C4并联且并联的一端接三端稳压器与语音模块的连接线上,电容C3与电容C4并联接三端稳压器与语音模块的连接线上,发光二极管接电阻R3,电阻R1、电阻R2、电阻R3、电容C1、电容C2、三端稳压器连接在探针与开关的连接线上。优点在于:提高水位测量的准确度,水文地质资料的精确度。
本发明公开一种加固岩质滑坡软弱面的方法,包括以下步骤:一、确认岩质滑坡及滑坡软弱面的位置;二、在滑坡软弱面前缘坡脚处修一个圆弧形帷幕;三、将第一种纳米材料a在坡顶注入岩质滑坡的软弱面中;四、在滑坡软弱面前缘坡脚处钻地质孔,取岩芯;五、在坡顶向滑坡软弱面注入第二种纳米材料b,将滑坡床和滑坡体粘结为一体。本发明设置的两种纳米材料均可以渗入软弱面,能够在重力作用下渗入软弱面,纳米材料起到加固滑坡的软弱面、粘结软弱面两侧的滑坡体和滑坡床的作用,防止滑坡的发生;同时,设置有第一种纳米材料和第二种纳米材料,第二种纳米材料刚好完全渗过软弱面之后,才和第一种纳米材料一起凝固,将滑坡床和滑坡体粘结为一体。
本发明公开了一种大尺寸含裂隙岩石矩形空洞突水多场前兆信息演化试验装置与测试方法,涉及岩石力学与承压渗透试验领域,其包括试验架,加载板,试样存放腔,侧压加载系统,垂直加载系统,水压加载系统,水温调节系统,信号采集与处理系统;通过制备大尺寸含矩形空洞和单一裂隙岩石试样,该试验装置与测试方法可以研究水‑力耦合下矩形空洞不同开挖深度突水过程中单一裂隙围岩应力、位移、裂隙、渗流、温度等多场前兆信息的演化规律、耦合特性及影响因素;该试验装置的水压加载系统、水温调节系统和侧压加载系统,能较好模拟承压水上含断层煤系地层的地质力学环境,反演分析深部承压水上回采工作面内采动断层突水机理,更好监测预警采动断层突水。
本发明公开了一种煤层原生CO原位探测方法,涉及地质勘探领域,包括步骤如下:S1:先钻孔至计算孔长的5/6长度,改风压为氮气排渣,然后继续钻孔至计算孔长;S2:钻孔成孔后,再在钻孔内分别布置2根外接球阀的钢管,另一端均置于孔底底端,采用囊袋式两堵一注装置及工艺对钻孔的端部进行封孔,形成密闭气室;S3:向注氮管注入高纯氮气进入到密闭气室中,然后从取样管抽取密闭气室内的气体;S4:将采集的气样用气相色谱仪分析。该方法的目的在于,消除测试区域煤体上与空气接触的可能,并在钻孔施工过程中采用高纯氮气进行保护,形成测试气室后,用高纯氮气置换气室内气体,清除气室内可能已经吸附的少量CO,为准确测试煤层是否存在原生CO创造条件。
中冶有色为您提供最新的安徽淮南有色金属探矿技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!