异质材料焊接与连接第四届学术会议
推广
硼氢化钠固态还原法制备氢化二氧化钛及其可见光催化性能

摘要: 以硼氢化钠为还原剂,通过调控反应温度和反应时间,采用固态还原法成功将白色锐钛矿二氧化钛还原为蓝色和黑色氢化二氧化钛,并对所得样品进行性质表征和性能测试。表征结果显示,氢化二氧化钛具有典型的核壳结构(TiO2/TiO2?x),包含锐钛矿晶型内层和无序结构外层;氢化反应在无序层中引入大量缺陷,其中Ti3+和氧空位缺陷在导带下方形成杂质能级,降低氢化二氧化钛材料的禁带宽度,扩宽了光谱吸收范围,增强可见光区的光吸收和利用能力。通过制备条件调控缺陷含量获得最佳光催化性能,光催化降解罗丹明B (RhB)结果显示,300℃和50 min反应条件下制备所得蓝色氢化二氧化钛材料的光催化性能最佳,可见光照射下降解效率相比于白色二氧化钛提高了六倍。

BiOI纳米片/TiO2纳米纤维复合结构的构筑及其可见光催化性能研究

摘要: 通过电纺技术与溶剂热方法的相结合,制备了BiOI纳米片/TiO2纳米纤维复合异质结构(BiOI/TiO2)。BiOI纳米薄片在电纺TiO2纳米纤维表面密集均匀地复合,所得复合结构具有较高的活性面积和分立结构,表现出较强的可见光催化活性。实验证明,BiOI/TiO2复合结构的可见光催化活性明显优于纯的TiO2纳米纤维和BiOI纳米薄片。此外,由于BiOI/TiO2复合结构所具有纳米纤维网毡结构,使其在污水处理领域展现了潜在的应用价值。

化工厂UV光催化废气处理设备

化工厂光催化废气处理设备适用范围设备适用范围炼油厂橡胶厂化工厂制药厂污水处理厂垃圾转运站等恶臭气体的脱臭净化处理

2024-04-19
g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解

使用液相沉淀法和热聚合法制备Bi2O3/g-C3N4复合催化剂,用SEM、XRD、XPS、FT-IR和紫外可见漫反射等手段对其微观形貌、晶体结构和光催化性能进行了表征。结果表明,这种Bi2O3/g-C3N4复合光催化剂的形貌较好、分布均匀,具有较高的光催化性能;复合催化剂Bi2O3/g-C3N4-30%的光催化性能最好,用300 W模拟可见光氙灯照射2 h后对盐酸四环素(TCH)的去除率为70%;捕获实验的结果表明,光催化降解盐酸四环素(TCH)的主要活性物种为超氧自由基(·O2-)。

g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮

用高温煅烧、反应合成以及光还原等方法制备新型g-C3N4/Ag/BiOBr复合光催化材料,使用SEM、XRD、EPMA、FT-IR、XPS和UV-vis等手段对其表征,研究了这种复合材料在金卤灯照射下对硝酸盐氮(50 mg/L)的还原效果和氮气选择性。结果表明,使用1 g/L g-C3N4/Ag/BiOBr复合光催化材料,光反应180 min后硝酸盐的去除率为95.2%。用g-C3N4/Ag/BiOBr光催化硝酸盐氮的主要产物中N2的占比最高(为88.0%),氮气的选择性为92.4%。g-C3N4/Ag/BiOBr催化剂中的Ag能促进对电子的捕捉,BiOBr的光生电子经银单质转移到g-C3N4的价带上形成Z型复合光催化结构。这种复

ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能

先用水热反应合成六方晶相CdS多层级花状微球并在其表面生长ZnO纳米棒形成均匀的ZnO/CdS复合结构,然后用光还原法将Ag纳米颗粒负载于ZnO纳米棒制备出ZnO/CdS/Ag三元半导体光催化剂,对其进行扫描电镜和透射电镜观察、光电性能测试、活性基团捕获实验以及光催化降解和抗菌性能测试,研究其对亚甲基蓝(MB)的降解和抗菌性能。结果表明:ZnO纳米棒均匀生长在CdS微球表面,CdS晶体没有明显裸露,Ag纳米粒子负载在ZnO纳米棒的表面;ZnO/CdS/Ag三元复合光催化剂有良好的可见光响应、较低的阻抗和较高的光电流密度;ZnO/CdS/Ag复合光催化剂能同时产

石墨/TiO2复合光催化剂的制备和性能

以石墨和纯的TiO2为原料,采用球磨工艺制备了石墨/TiO2复合光催化剂。使用XRD、SEM、TEM、XPS和DRS等手段对其性能进行了表征。以甲基橙为模拟污染物,研究了石墨掺入量、球磨时间对复合光催化剂光催化活性的影响。结果表明,石墨/TiO2复合光催化剂具有锐钛矿结构,球磨后TiO2(101)面的衍射峰宽化并右移,TiO2成为200 nm左右的不规则球状颗粒,在其表面均匀分布着石墨。TiO2晶粒的Ti-O键的结合能变高,且表面有缺陷产生,使其在可见光区具有显著的吸收。石墨掺入量为5%、球磨时间为12 h的石墨/TiO2样品对甲基橙具有优异的光催化降解效果,在70 min的降解时间内甲基橙的降解去除率可达95.08%。石墨/TiO2复合光催化剂的光催化反应速率常数k为0.043035 min-1,是纯TiO2的2.64倍。

标签:
催化剂 石墨
两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能

用两步水热法合成了BiOCl-RGO复合材料。先在乙二醇和去离子水的混合溶液中合成直径约为400 nm、由纳米片构成的微球状单一BiOCl样品,在此基础上引入RGO载体制备出BiOCl-RGO纳米复合材料。使用Raman光谱、XRD、XPS等手段表征样品的物相构成,用SEM和TEM观测其微观形貌,通过降解甲基橙评定样品的光催化性能。结果表明,水热温度显著影响复合材料的光催化性能,在140℃制备的BiOCl和石墨烯结合的样品具有最高的光催化性能。

介孔氧化硅/氧化铈核壳双相复合颗粒的制备及其光催化降解活性

将CeO2纳米粒子负载在介孔氧化硅(W-mSiO2)支撑体上,制备了核壳结构的W-mSiO2/CeO2双相光催化复合颗粒。用X射线衍射、扫描电镜、透射电镜、氮气吸脱附、STEM-EDX mapping、Raman光谱、荧光光谱、紫外-可见漫反射光谱等手段分析样品的结构和性质,考察了复合光催化材料对亚甲基蓝(MB)的光催化降解反应活性。结果表明,复合颗粒中介孔氧化硅内核的尺寸为180~200 nm、比表面积高达1627 m2/g,包覆层(厚度约20 nm)由大量尺寸为数纳米的氧化铈粒子组成。介孔内核对MB有较强的吸附能力,使之富集在CeO2活性粒子周围,从而提高了复合颗粒对MB的光催化降解效果。对壳层CeO2纳米粒子进行Er3+掺杂改性并在非氧化性气氛(氮气)中保护煅烧,有助于进一步提高复合颗粒对MB的光催化降解活性。

钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能

用磁控溅射法在ITO玻璃基底上制备Ti-Co合金薄膜,对其阳极氧化处理制备出钴掺杂TiO2纳米管阵列薄膜,研究了钴掺杂对纳米管阵列薄膜的形貌、结构、吸收光谱以及光催化还原性能的影响。结果表明:钴掺杂TiO2纳米管阵列薄膜为锐钛矿相,管状阵列的管径均一、排列规整。钴掺杂使薄膜形成(001)择优取向。随着钴掺杂量的提高,薄膜吸收可见光的能力提高。钴含量(原子分数)为0.19%的薄膜光催化性能最优,可见光照150 min后对Cr(VI)的还原率可达98.4%。

洗车用水光催化氧化处理工艺

本发明属于污水处理领域,具体的说是一种洗车用水光催化氧化处理工艺,洗车废水经砂滤装置处理后,送入光催化氧化器内进行氧化处理,光催化氧化器中设置有光催化氧化机构和催化剂分离机构,催化剂分离机构包括管道和过滤膜,管道内安装有储压室一和储压室二,储压室二上设置有活动板,活动板之间通过连板固定连接,检测座的内部固定安装有控制警报单元的按钮;通过设置两组储压室对过滤膜的跨膜压差进行实时监测,跨膜压差超出设定值后,压力带动活动板和连板发生位移,使得连板与按钮接触,警报单元发出警示信息,提醒工作人员对过滤膜进行维护处理,实现了自动对过滤膜进行实时监测的功能,结构简单,使用方便。

2024-04-08
转卖200T南通天王液压机

南通天王液压机200T,性能良好!能正常使用,现低价转让!非诚勿扰!有意者请电话联系林生:13902387902

生物质基材料对含铬废水的吸附-光催化协同去除研究

生物质基材料对含铬废水的吸附-光催化协同去除研究,高翔鹏,安徽工业大学,表面丰富的官能团通过静电吸引、络合作用等对重金属离子有较强的吸附作用;可通过表面嫁接、化学交联等手段提升其吸附容量、选择性、化学稳定性;具有一定的光催化潜力,但仍需通过化学改性提升光响应能力、调整能带结构提升应用性能;提取于木屑、藻类、虾壳等固体废弃物,来源广泛、成本低廉,是提升其附加值的一种再利用手段。

分类:环保行业
2023-05-10
王亚珂
[会议嘉宾]王亚珂

王亚珂,太原科技大学2021级博士,主要从事钙钛矿太阳能电池柔性封装领域从事封装基板与电极材料异质界面连接问题的研究,攻读博士研究生期间,主持省级研究生创新项目1项,参与省部级科研项目2项,参与申请国家自然基金项目1项;以一作发表在《Surfaces and Interfaces》、《Materials Research Bulletin》、《Diamond and Related Materials》等国际期刊发表SCI论文6篇,参与申请国家专利2项、曾获得2022年太原科技大学“三好研究生”、2023年研究生国家奖学金。

擅长领域:主要从事钙钛矿太阳能电池柔性封装领域从事封装基板与电极材料异质界面连接问题的研究。
2024-04-24
上一页 1 下一页
共1页    到第
推荐会议
热搜关键词
1低温蒸发结晶设备
2装备
3矿山地质测量
4综合回收装置
5天津忠旺
6卫生规范
7有色金属冶炼
8辐照
9矿山筛分装置
10中国新能源材料与器件第四届学术会议
2024中国结构材料大会暨第十届全国有色金属结构材料制备/加工及应用技术交流会
推广

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807