本发明涉及电液作动器故障诊断领域,公开了一种基于数据驱动的在线神经网络故障诊断方法,解决传统的作动器故障诊断中无法实时更新数据库的问题。本发明的要点为:分析电液作动器结构,搭建电液作动器的仿真模型;分析作动器失效形式,对电液作动器的仿真模型植入不同类型的故障,完成信号的采集;采集得到的数据,对其开展特征值提取和降维工作;构建标签故障数据矩阵,对其特征值开展离线训练和在线训练,从而获得在线神经网络;实时采集电液作动器工作数据,利用在线神经网络对采集到的数据进行故障诊断;故障诊断之后,对采集到的数据进行在线训练,从而更新在线神经网络。本发明适用于电液作动器故障诊断。
声明:
“基于数据驱动的在线神经网络故障诊断方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)