本发明公开了一种基于深度神经网络的螺栓拧紧失效原因分析方法,包括创建拧紧场景、获取特征指标、创建初始标签数据、建立全连接神经网络模型、预测失效原因,在拧紧的场景中,以10%的不合格曲线以及特征指标作为样本数据,对样本数据进行高斯混合模型聚类,得到4~5个聚簇,对每个聚簇的所有拧紧曲线中的角度数据X和所有扭矩数据Y进行多项式回归,得到回归曲线。本发明涉及机器学习技术领域,该基于深度神经网络的螺栓拧紧失效原因分析方法,通过利用计算机软件算法,能够代替专业人员自动判别每一次拧紧失效的异常原因后定向反馈,进而达到节约人工并为其他报警、监控类软件系统提供数据支持的目的。
声明:
“基于深度神经网络的螺栓拧紧失效原因分析方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)